
Chapter 9

[231]

4. In the screenshot, the default language is English. To add additional
languages, click the Add button and select the language you need (see the
following screenshot):

5. This particular example will add the Hindi Language keyboard. Click the
OK button to save your changes, and exit the Control Panel. You will see
the language bar on the top right of your desktop, and you can click the
language button and switch languages accordingly. You can use a Hindi
keyboard to enter Hindi Unicode characters in the resource files.

Localization

[232]

In this way, you can switch to different languages and enter characters in your test
web site to check the localization. There is an excellent article on how to use IME
to enter Japanese, Korean, and Chinese language characters, available via the
following link:
http://www.microsoft.com/globaldev/handson/user/IME_Paper.mspx

Using a Database for Localization
We have seen how to localize the text of the controls and the application content in
the UI. But sometimes, the content is stored in a database, and this content also needs
to be localized (for example, when using a Content Management System). Because
this content is stored in a database, we cannot use resource files for this. Sometimes
we may not be able to use resource files at all because we might want to avoid an
application recompilation or restart when updating localized content (remember
that updating a resource file under the /bin folder will cause an application
recompilation or an application restart.).

Also, using a database gives us the flexibility to edit content easily as there are no
resource files involved. We can create a simple edit form, so that content authors can
edit and update the content without having any programming knowledge.

Custom Resource-Provider-Model in ASP.NET
When we use a database instead of .resx files to store the localized content in
our application, we will need to make sure that we can access the resources using
implicit as well as explicit localization, and get different localized content based
on changing the current thread's locale. In short, we will need to create a similar
framework to the one that ASP.NET provided us with when using .resx files.

Fortunately, in ASP.NET 3.5, this process is made easy by extending the
Resource-Provider-Model and creating a custom database-based resource provider.
Using the provider model will help us to leverage the ASP.NET infrastructure to
manage localized resources from a database and use its API for performing the same
tasks as for the XML based .resx files. Because the Resource-Provider-Model has a
simple implementation approach, we will not study it in detail in this chapter. You
can refer to the links given here for a detailed step-by-step example of how to extend
the Resource-Provider-model to use a database instead of the .resx files:

http://www.west-wind.com/presentations/wwDbResourceProvider/

